24 research outputs found

    Cell death in NF-κB-dependent tumour cell lines as a result of NF-κB trapping by linker-modified hairpin decoy oligonucleotide

    Get PDF
    AbstractThe transcription factor NF-κB is frequently activated in cancer, and is therefore a valuable target for cancer therapy. Decoy oligodeoxynucleotides (ODNs) inhibit NF-κB by preventing its binding to the promoter region of target genes. Few studies have used NF-κB-targeting with ODNs in cancer. Using a hairpin NF-κB-decoy ODN we found that it induced growth inhibition and cell death in NF-κB-dependent tumour cell lines. The ODN colocalized with the p50 subunit of NF-κB in cells and directly interacted with it in nuclear extracts. In TNFα-treated cells the ODN and the p50 subunit were found in the cytoplasm suggesting that the complex did not translocate to the nucleus. Transcriptional activity of NF-κB was efficiently inhibited by the ODN, whereas a scrambled ODN was without effect on transcription. Thus, ODN-mediated inhibition of NF-κB can efficiently promote cell death in cancer cells providing a potentially powerful approach to tumour growth inhibition

    A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Signal Transducer and Activator of Transcription 3 (STAT3) is activated in tumor cells, and STAT3-inhibitors are able to induce the death of those cells. Decoy oligodeoxynucleotides (dODNs), which bind to the DNA Binding Domain (DBD) of STAT3, are efficient inhibitors. However, they also inhibit STAT1, whose activity is essential not only to resistance to pathogens, but also to cell growth inhibition and programmed cell death processes. The aim of this study was to design STAT3-specific dODNs which do not affect STAT1-mediated processes.</p> <p>Results</p> <p>New dODNs with a hairpin (hpdODNs) were designed. Modifications were introduced, based on the comparison of STAT3- and STAT1-DBD interactions with DNA using 3D structural analyses. The designed hpdODNs were tested for their ability to inhibit STAT3 but not STAT1 by determining: i) cell death in the active STAT3-dependent SW480 colon carcinoma cell line, ii) absence of inhibition of interferon (IFN) γ-dependent cell death, iii) expression of STAT1 targets, and iv) nuclear location of STAT3 and STAT1. One hpdODN was found to efficiently induce the death of SW480 cells without interfering with IFNγ-activated STAT1. This hpdODN was found in a complex with STAT3 but not with STAT1 using an original in-cell pull-down assay; this hpdODN also did not inhibit IFNγ-induced STAT1 phosphorylation, nor did it inhibit the expression of the STAT1-target IRF1. Furthermore, it prevented the nuclear transfer of STAT3 but not that of IFNγ-activated STAT1.</p> <p>Conclusions</p> <p>Comparative analyses at the atomic level revealed slight differences in STAT3 and STAT1 DBDs' interaction with their DNA target. These were sufficient to design a new discriminating hpdODN that inhibits STAT3 and not STAT1, thereby inducing tumor cell death without interfering with STAT1-dependent processes. Preferential interaction with STAT3 depends on oligodeoxynucleotide sequence modifications but might also result from DNA shape changes, known to modulate protein/DNA interactions. The finding of a STAT3-specific hpdODN establishes the first rational basis for designing STAT3 DBD-specific inhibitors.</p

    A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor STAT3 (signal transducer and activator of transcription 3) is frequently activated in tumor cells. Activated STAT3 forms homodimers, or heterodimers with other TFs such as NF-κB, which becomes activated. Cytoplasmic STAT3 dimers are activated by tyrosine phosphorylation; they interact with importins via a nuclear localization signal (NLS) one of which is located within the DNA-binding domain formed by the dimer. In the nucleus, STAT3 regulates target gene expression by binding a consensus sequence within the promoter. STAT3-specific decoy oligonucleotides (STAT3-decoy ODN) that contain this consensus sequence inhibit the transcriptional activity of STAT3, leading to cell death; however, their mechanism of action is unclear.</p> <p>Results</p> <p>The mechanism of action of a STAT3-decoy ODN was analyzed in the colon carcinoma cell line SW 480. These cells' dependence on activated STAT3 was verified by showing that cell death is induced by STAT3-specific siRNAs or Stattic. STAT3-decoy ODN was shown to bind activated STAT3 within the cytoplasm, and to prevent its translocation to the nucleus, as well as that of STAT3-associated NF-κB, but it did not prevent the nuclear transfer of STAT3 with mutations in its DNA-binding domain. The complex formed by STAT3 and the STAT3-decoy ODN did not associate with importin, while STAT3 alone was found to co-immunoprecipitate with importin. Leptomycin B and vanadate both trap STAT3 in the nucleus. They were found here to oppose the cytoplasmic trapping of STAT3 by the STAT3-decoy ODN. Control decoys consisting of either a mutated STAT3-decoy ODN or a NF-κB-specific decoy ODN had no effect on STAT3 nuclear translocation. Finally, blockage of STAT3 nuclear transfer correlated with the induction of SW 480 cell death.</p> <p>Conclusions</p> <p>The inhibition of STAT3 by a STAT3-decoy ODN, leading to cell death, involves the entrapment of activated STAT3 dimers in the cytoplasm. A mechanism is suggested whereby this entrapment is due to STAT3-decoy ODN's inhibition of active STAT3/importin interaction. These observations point to the high potential of STAT3-decoy ODN as a reagent and to STAT3 nucleo-cytoplasmic shuttling in tumor cells as a potential target for effective anti-cancer compounds.</p

    STAT1 and pathogens, not a friendly relationship

    No full text
    International audienceSTAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) alpha, and thereafter found to be a major component of the cellular response to IFNgamma. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein-Barr virus, have evolved a strategy which uses STAT1 activation

    Electrostatic assembly of a DNA superparamagnetic nano-tool for simultaneous intracellular delivery and in situ monitoring.

    No full text
    International audienceA superparamagnetic γFe(2)O(3) nanocarrier was developed, characterized by spectroscopic methods and evaluated for the delivery of a decoy oligonucleotide (dODN) in human colon carcinoma SW 480 cells. This nanoparticle-dODN bioconjugate (γFe(2)O(3)@dODN) was designed to target the signal transducer and activator of transcription 3, STAT3, a key regulator of cell survival and proliferation. We exploited a simple precipitation-redispersion mechanism for the direct and one-step complexation of a labeled decoy oligonucleotide with iron oxide nanoparticles (NPs). The cell internalization of the decoy γFe(2)O(3)@dODN nanoparticles is demonstrated and suggests the potential for DNA delivery in biological applications. Despite the increasing use of NPs in biology and medicine, convenient methods to quantify them within cells are still lacking. In this work, taking advantage of the nonlinear magnetic behavior of our superparamagnetic NPs, we have developed a new method to quantify in situ their internalization by cells. FROM THE CLINICAL EDITOR: In this study, the authors demonstrate methods to quantify superparamagnetic nanocarriers within cells, taking advantage of the nonlinear magnetic behavior of the studied NPs

    Easily controlled grafting of oligonucleotides on γFe2O3 nanoparticles: physicochemical characterization of DNA organization and biological activity studies.

    No full text
    International audienceWe report a one-step process to functionalize superparamagnetic iron oxide nanoparticle (SPIO-NP) surfaces with a controlled number of oligonucleotides. For this study, we use a specific oligonucleotide targeting the signal transducer and activator of transcription 3 (STAT3), a key regulator of cell survival and proliferation. This oligonucleotide is self-complementary and can adopt a hairpin structure. It is labeled with the fluorescein amidite group at the 3'-end. The polyanionic DNA is electrostatically attracted onto the positively charged surface of the bare SPIO-NPs. During synthesis, the molar ratio between the oligonucleotides and nanoparticles was varied from 17.5 to 175. For particles with a mean diameter of 10 nm, a nanoparticle surface saturation is observed corresponding to 70 DNA strands per particle. The increase of DNA density per nanoparticle is correlated to a transition from the hairpin structure adsorbed horizontally on the nanoparticle surface to a vertically ordered surface packing assembly. An in vitro study on human colon carcinoma cell line SW480 shows that the kinetics of internalization and biological activity of the NPs seem to be dependent on the oligonucleotide density. Cell death and the kinetics of internalization are favored by a low density of oligonucleotides

    Expression of a Novel Form of the p56lck Protooncogene in Rat Cerebellar Granular Neurons

    No full text
    International audienceThe src family protein tyrosine kinases (PTKs) are nonreceptor kinases. Some PTKs of this family are ubiquitously expressed, whereas others have a more restricted expression, as in neurons. Lymphoid cell kinase (lck) p56lck is highly expressed in tissues of lymphoid origin and believed to be specific for hematopoietic cells. Reports suggesting that CD4 is expressed in neurons prompted us to analyze the possibility that p56lck is also expressed in these cells. By western blot and immunoprecipitations using anti-lck antibody, an lck-like protein was detected in lysates from primary cultures of rat cerebellar granular neurons. This 56-kDa phosphoprotein was autophosphorylated in vitro and also phosphorylated enolase, similarly to p56lck. It was shown to be located actually in the neurons by immunocytofluorescence. Partial proteolysis mapping showed that the 56-kDa phosphoprotein had a peptide pattern very similar to the p56lck protein. Retrotranscription-PCR allowed the detection of an lck RNA in the neurons. The lck kinase domain was completely identical to the lymphocyte lck kinase domain, but the 5' end was modified in the neurons. These results show that p56lck is not lymphoid specific as is widely believed; its expression in neurons might underlie the toxicity of the HIV glycoprotein gp120 to neurons

    Effect of tumor necrosis factor alpha and infliximab on apoptosis of B lymphocytes infected or not with Epstein-Barr virus.

    No full text
    International audienceChronic inflammation and immunosuppressive therapies increase the risk of non-Hodgkin's lymphoma associated or not with Epstein-Barr virus (EBV) infection. A possible link between infliximab treatment and increased risk of lymphoma has been suggested. Indeed, infliximab induces apoptosis of monocytes and activated T lymphocytes, but its effect on B lymphocytes infected or not with EBV is unknown. Secreted tumor necrosis factor (TNF) alpha and the expression level of TNF receptor 1 (TNFR1) and TNFR2 were compared in EBV-positive and negative B-cell lines. The impact of TNFalpha and infliximab on apoptosis of EBV-positive cells was analyzed regarding the activity of NF-kappaB. Increased expression of TNFalpha in EBV-positive cells suggested that infliximab could affect their survival. However, TNFalpha or infliximab incubation had no effect on apoptosis of EBV-positive cells. Loss of NF-kappaB activity sensitized lymphoblastoid cell lines to TNFalpha-induced apoptosis, but no direct effect of infliximab on apoptosis was detected. On the basis of our in vitro data, neither TNFalpha nor infliximab has a direct effect on apoptosis of B lymphocytes and EBV-positive cell lines. Thus, if an increased incidence of lymphoma were induced by TNFalpha blockers, it would not involve a direct effect on B cells but rather an impaired immune surveillance by T cells
    corecore